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Abstract

Reduced models of human arterial networks are an efficient approach to analyze quantitative macroscopic features of
human arterial flows. The justification for such models typically arise due to the significantly long wavelength associated
with the system in comparison to the lengths of arteries in the networks. Although these types of models have been
employed extensively and many issues associated with their implementations have been widely researched, the issue of data
uncertainty has received comparatively little attention. Similar to many biological systems, a large amount of uncertainty
exists in the value of the parameters associated with the models. Clearly reliable assessment of the system behaviour cannot
be made unless the effect of such data uncertainty is quantified.

In this paper we present a study of parametric data uncertainty in reduced modelling of human arterial networks which
is governed by a hyperbolic system. The uncertain parameters are modelled as random variables and the governing equa-
tions for the arterial network therefore become stochastic. This type stochastic hyperbolic systems have not been previ-
ously systematically studied due to the difficulties introduced by the uncertainty such as a potential change in the
mathematical character of the system and imposing boundary conditions. We demonstrate how the application of a
high-order stochastic collocation method based on the generalized polynomial chaos expansion, combined with a discon-
tinuous Galerkin spectral/hp element discretization in physical space, can successfully simulate this type of hyperbolic sys-
tem subject to uncertain inputs with bounds. Building upon a numerical study of propagation of uncertainty and sensitivity
in a simplified model with a single bifurcation, a systematical parameter sensitivity analysis is conducted on the wave
dynamics in a multiple bifurcating human arterial network. Using the physical understanding of the dynamics of pulse
waves in these types of networks we are able to provide an insight into the results of the stochastic simulations, thereby
demonstrating the effects of uncertainty in physiologically accurate human arterial networks.
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1. Introduction

1.1. Reduced modelling of arterial networks

The one-dimensional modelling of the human arterial system was introduced by Euler in 1775 [8] who
derived the partial differential equations expressing the conservation of mass and momentum for inviscid flow.
In order to close the problem, he also suggested two possible, but experimentally unrealistic, constitutive equa-
tions describing the behaviour of the elastic wall with changes in the lumenal pressure. Apparently, he did not
recognize the wave-like nature of the flow and therefore could not solve the equations. The wave nature of the
arterial flow was, however, first described scientifically by Young [41] who derived the wave speed using an
argument based on intuition and analogy to Newton’s theory of the speed of sound in air. In 1877, Moens
[23] and Kortweg [20] independently published analyses of flow in thin-walled elastic vessels, deriving what
is now known as the Moens–Kortweg equation for the wave speed. Riemann [25] provided the analytical tools
for the general equations when he introduced the method of characteristics, which was first applied to arterial
flow more than 50 years ago, most notably by Anliker and co-workers [30,31] and Skalak [27].

The equations derived by Euler are a system of non-linear partial differential equations analogous to the
shallow-water equations of hydrodynamics or the one-dimensional inviscid equations of gas dynamics. Typ-
ical wave-speeds in the arterial system are of the order of 3–10 m/s. Since a typically heart beat is of order of a
second, linearized analysis suggests that the wavelengths of pulses in the arterial tree are of the order of 3–10 m
which is far larger than any length of individual artery. Therefore, under physiological/healthy conditions of
the human arterial system, the equations are only weakly non-linear and therefore many characteristics of the
flow can be captured by the linearized system. This is essentially the approach of Womersley [35] who linear-
ized the two-dimensional equations for flow in straight, circular elastic tubes and obtained the wave solution
by Fourier techniques. This linear analysis has become the ‘‘standard’’ model of waves in the arteries found in
most hemodynamics textbooks. The success of the linearized model and the apparently periodic nature of the
arterial system has led most investigators since Womersley to analyze arterial flow in the frequency rather than
the time domain using the so-called ‘‘electrical’’ analogy.

Although there is a large body of work using the frequency-domain analysis, many facets of the physiolog-
ical waveforms have yet to be explained. Direct analysis and modelling of the hyperbolic system in the time-
domain allows various advantages permitting the investigator to understand more of the physical properties of
the system [4,5]. For example, an assumption used in the frequency-domain approach is that the arterial sys-
tem is in a state of ‘‘steady oscillation’’. This is not always true, since ectopic beats arise when the contraction
of the heart is blocked or is so ineffective that the aortic valve never opens. In this case, neither the flow nor the
pressure shows any hint of the previous periodic behaviour. However, this effect can be understood from anal-
ysis of the time-domain hyperbolic system since the characteristic speed of wave propagation is sufficiently fast
that the time scale to propagate information through the whole arterial system is much smaller than the dura-
tion of the cardiac cycle.

Although the system is only weakly non-linear, the bifurcating network of arteries in the network leads to
multiple reflections leading to relatively complicated pulse wave patterns. The need to propagate the waves
over many wavelengths without numerical dispersion makes the modelling of the system relatively challenging.
Time-domain analysis was investigated by Wang and Parker [33,34] who adopted a semi-analytical time–space
domain approach to model the linearized wave motion in arteries. The method of characteristic has also pre-
viously been applied by Skalak [27], Stettler et al. [30,31] and Stergiopulos et al. [29]. More recently aeronau-
tical-type numerical modelling techniques have been applied to the problem (e.g. [26,10]).

1.2. Stochastic modelling

While modelling of pulse wave propagation in the human arterial system received considerable amount of
attention, little has been paid to the effects of uncertainty in the models. In complex biological fields, math-
ematical models serve as simplified and reduced representations of the true physics and, although useful, their
usage is often constrained by the difficulty of assigning numerical values to various parameters and boundary/
initial conditions required by the governing equations. Furthermore, the complexity of the physics, e.g., large
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variability in human body conditions, results in a significant amount of uncertainty associated with these
‘‘parameters’’—the so-called parametric uncertainty. Traditional approach assigns ‘‘most likely’’ values to
the parameters, via some parameter estimation procedures, and such an approach could be inadequate as
the complex biological processes may depend sensitively to some of the parameters. Also, very often observ-
ables from experimental measurements are not repeated enough times for reliable statistical estimates to be
made on the ‘‘likelihood’’ of the parameter values. Therefore, mathematical and numerical techniques are
needed to develop effective means of quantifying parameter uncertainty and its effect in complex biological
systems.

One of the most commonly used methods for uncertainty analysis is the Monte Carlo sampling (MCS).
Although MCS is straightforward to apply as it only requires repetitive executions of deterministic simula-
tions, typically a large number of such executions are needed as the solution statistics converge relatively
slowly, e.g., the mean value typically converges as 1=

ffiffiffiffi
K
p

where K is the number of realizations (e.g., [9]).
The need for large number of realizations for accurate results can incur excessive computational burden, espe-
cially for systems that are already computationally expensive in their deterministic settings.

A framework of generalized polynomial chaos (gPC) [39] was recently developed and it offers possibility of
developing fast numerical algorithms for uncertainty analysis in complex systems. The gPC framework
extends the earlier polynomial chaos (PC) method, which was first pioneered by Ghanem and co-workers
and successfully applied to many problems (cf. [17,14,16,15]). With gPC, stochastic quantities are expressed
as general orthogonal polynomials of the input random parameters, and different types of orthogonal poly-
nomials can be chosen to achieve better convergence [39,40]. The original PC approach by Ghanem, which
employs Hermite polynomials, can be naturally incorporated in the gPC framework. A gPC expansion is
essentially a spectral representation in random space, and exhibits fast convergence when the expanded func-
tion depends smoothly on the random parameters. Exponentially fast convergence can be achieved under cer-
tain circumstances. (See [7,39,40,38] for detailed discussions.)

When applied to differential equations with random inputs, the quantities to be solved are the expansion
coefficients of the gPC expansion. A typical approach is to conduct a Galerkin projection to minimize the
error of the finite-order gPC expansion, and the resulting set of equations for the expansion coefficients are
deterministic and can be solved via conventional numerical techniques. This has been done in various appli-
cations and proved to be very effective (cf. [1,7,11,17,21,39,40,38]).

Stochastic Galerkin (SG) procedure can be challenging when the governing stochastic equations take com-
plicated forms, in which case the derivation of the equations for the gPC coefficients can be very difficult, if not
impossible. To this end, high-order stochastic collocation (SC) approach can be used [6,37,36]. While retaining
the high accuracy of gPC approximation, the implementation of a SC algorithm is straightforward, as it only
requires repetitive realizations of a deterministic solver – similar to MCS. The choice of the realizations points
– ‘‘sampling points’’– is where SC differs from MCS. (Indeed MCS is a type of collocation method on random
points, and there has been an attempt to utilize it to speed up PC computations [13].) Earlier engineering appli-
cations use tensor products of one-dimensional quadrature points and are not proper for problems with large
number of random variables because of the exponential growth of the number of points (cf. [32]). Although a
recent study for stochastic elliptic equations suggests that the tensor product approach is of high order, typ-
ically the number of random variables is restricted to less than five in practical applications [6]. On the other
hand, the work of [37,36] represents a systematical attempt to avoid using tensor product points. Specifically,
the so-called ‘‘sparse grid’’ [28] is found to be highly efficient in handling problems with random variables of as
many as 50 [37]. Error bound and examples of problems with complicated governing equations can be found
in [36], and applications to random natural convection problems with adaptive choice of sparse grid can be
found in [12].

1.3. Outline of paper

The gPC framework serves as a solid foundation to study problems with parametric uncertainty of large
variability. This is particularly true for biological problems, where tremendous amount of data uncertainty
exists due to lack of accurate measurement and/or large variation in the underlying systems. A straightforward
application of stochastic Galerkin approach is challenging because of the complex form of the governing
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equations. In fact, no systematical numerical study has been conducted for stochastic hyperbolic systems such
as the one considered in this paper. (The study in [18] demonstrated that even for the simplest hyperbolic prob-
lem, a scalar wave equation, uncertainty can change the properties of the stochastic Galerkin equations sig-
nificantly.) Here the pseudo-spectral type stochastic collocation method presented in [36] is employed to
study the effect of parametric uncertainty in a human arterial network model. We first present the mathemat-
ical framework for such a model, in both deterministic and stochastic settings. We then briefly introduce the
gPC expansion and stochastic collocation method. The method is applied to two examples for which we also
analyze parametric sensitivity. One is a simplified model case with one-bifurcation, where we study the uncer-
tainty propagation and evolution of sensitivity coefficients. The other is a full scale network for a human arte-
rial system containing 37 branches and it represents the first such study on uncertainty and data sensitivity in
physiologically realistic simulations.

2. Methodology

2.1. Deterministic model for human artery network

2.1.1. Governing deterministic equations

The mathematical model is based on the non-linear, one-dimensional equations of pressure and flow wave
propagation in compliant vessels. The governing system of equations results from conservation of mass and
momentum applied to a one-dimensional impermeable and deformable tubular control volume of incompress-
ible and Newtonian fluid. They take the form [26]
oA
ot
þ oðAUÞ

ox
¼ 0; ð1Þ

oU
ot
þ U

oU
ox
¼ � 1

q
op
ox
þ f

qA
; ð2Þ
where x is the axial coordinate along the vessel, t is the time, A(x, t) is the cross-sectional area of the vessel,
U(x,t) is the average axial velocity, p(x, t) is the average internal pressure over the cross-section, q is the density
of blood and f(x, t) is the friction force per unit length. In what follows we will concentrate on the inviscid limit
where f = 0 typically associated with the larger conduit arteries in the cardiovascular system.

The system of equations is completed with a pressure–area relation, p ¼ FðA; x; tÞ. We will adopt a relation
previously used in [34,26,24,4,5] which assumes a thin, homogeneous and elastic arterial wall and it takes the
form
p ¼ p0 þ bð
ffiffiffi
A
p
�

ffiffiffiffiffi
A0

p
Þ; b ¼

ffiffiffi
p
p

hE
ð1� r2ÞA0

; ð3Þ
where A0(x) and h(x) are the sectional area and wall thickness at the reference state (p0,U0), with p0 and U0

assumed to be zero, E(x) is the Young’s modulus and r is the Poisson’s ratio, typically taken to be r = 1/2
since biological tissue is practically incompressible. Whilst the pressure–area relationship is non-linear with
the property that at higher pressures the arteries are more stiff, the normal physiological/healthy range can
reasonably be approximately as linear in terms of the radius as suggested by Eq. (3). Using Eq. (3) the param-
eter b can be directly related to the speed of pulse wave propagation, c, through [26]
c ¼

ffiffiffiffiffiffi
b

2q

s
A1=4: ð4Þ
2.1.2. The characteristic system

Following the work of [10,30,33], we consider Eqs. (1) and (2) with the pressure–area relationship (3), and
b, A0 constant. We write the system in non-conservative form as
oU

ot
þHðUÞ oU

ox
¼ 0; ð5Þ
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where
U ¼
A

U

� �
H ¼

U A
1

qDA U

" #
;

and we have introduced the distensibility D defined as D ¼ 1
A

dA
dp.

Under the assumption that A > 0, indeed a necessary condition to have a physically relevant solution, the
matrix H has two real eigenvalues
k1;2ðHÞ ¼ U � c;
where c ¼ 1ffiffiffiffi
qD
p is the wave speed for the non-linear system. For typical values of velocity, vessel area and the

elastic parameter b encountered in arteries under normal physiological conditions, we find that the system is
subsonic and so k1 > 0 and k2 < 0. Next we introduce a change of variables [26] and transform Eq. (5) into its
characteristic system of the form
oW

ot
þ K

oW

ox
¼ 0;
where K is a diagonal matrix containing the eigenvalues and the characteristic variables are defined as
W 1;2 ¼
Z U

U0

dU �
Z A

A0

c
A

dA ¼ U � U 0 �
Z A

A0

c
A

dA; ð6Þ
where (U0,A0) is taken as a reference state. (The characteristic variables given by Eq. (6) are also called the
Riemann invariants of the system (1) and (2) in terms of the (A,u) variables).

Finally, for the pressure area relationship defined in Eq. (3) we can derive an explicit form of W. Recalling
that c ¼ 1=

ffiffiffiffiffiffiffi
qD
p

and evaluating D for the pressure area relationship (3), we obtain
W 1;2 ¼ U � 4ðc� c0Þ ¼ U � 4

ffiffiffiffiffiffi
b

2q

s
ðA1=4 � A1=4

0 Þ; ð7Þ
where we have assumed that U0 = 0 when A = A0. The above expression was also obtained by Formaggia
et al. [10] who considered the more general (A,Q) system.

2.1.3. Numerical scheme

Eqs. (1)–(3) are solved using a discontinuous Galerkin scheme with a spectral/hp spatial discretization and a
second-order Adams–Bashforth time-integration scheme. This scheme is suitable for the 1D formulation
because it can propagate waves of different frequencies without suffering from excessive dispersion and diffu-
sion errors. Details on this algorithm can be found in [19,26].

2.1.4. Treatment of boundary conditions and bifurcations

To close the system we require boundary conditions for incoming characteristics and also a condition to
couple multiple segments into an arterial network of bifurcating vessels. Since full details have previously been
discuss in [26], here we highlight the main implementation points in what follows.

The choice of an explicit time-integration scheme in our numerical discretization allows boundary condi-
tions of the hyperbolic system to be enforced using characteristic information at an explicit time level. There-
fore at an inflow boundary of an arterial network we use the solution of a local Riemann problem to enforce
either a known value of the pressure or velocity in time. Alternatively, we can impose an absorbing boundary
where a desired incoming state is weakly enforced through the upwind characteristic information whilst the
outgoing characteristic remains constant.

Finally, to enable a network of many bifurcating arteries to be linked we need an interface condition at a
bifurcation as illustrated in Fig. 1. Looking at the problem from the characteristic point of view, information
can only reach the bifurcation from within vessel 1 by a forward travelling wave. The forward travelling wave
is governed in terms of the characteristic variable W 1

1 (where superscript denotes the vessel number) and
according to Eq. (7) is a function of (A1,U1). Similarly within the daughter vessels information can only reach
the bifurcation by a backwards travelling wave which is governed by characteristic variables W 2

2ðA2;U 2Þ or
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Fig. 1. Notation for arterial tree bifurcation.
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W 3
2ðA3;U 3Þ. The hyperbolic nature of the problem reduces the incoming information to three constant char-

acteristic variables W 1
1;W

2
2 and W 3

2. The first three equations of the Riemann problem are obtained by impos-
ing that the characteristic variables in each vessel should remain constant. From the definition of the
characteristic variables for the non-linear system, given by Eq. (7), we have
U 1 þ 4ðc1 � c1
0Þ ¼ W 1

1; ð8Þ
U 2 � 4ðc2 � c2

0Þ ¼ W 2
2; ð9Þ

U 3 � 4ðc3 � c3
0Þ ¼ W 3

2; ð10Þ
where c1
0; c2

0; c3
0 are the values of the wave speed c evaluated using the equilibrium area A0 in vessels 1, 2 and

3, respectively.
To close the problem we require another three independent equations. The first condition is physically

motivated by requiring that the mass is conserved through the bifurcation and, therefore, mass flux balance
results in Q1 = Q2 + Q3. The other two conditions are obtained from the requirement of continuity of the
momentum flux at the bifurcation. This leads to the condition that total pressure p þ 1

2
qU 2 should be contin-

uous at the boundary. These requirements provide the three additional equations:
A1U 1 ¼ A2U 2 þ A3U 3; ð11Þ

p1 þ
1

2
qU 2

1 ¼ p2 þ
1

2
qU 2

2; ð12Þ

p1 þ
1

2
qU 2

1 ¼ p3 þ
1

2
qU 2

3: ð13Þ
In summary, the six equations given by (8)–(13) define a non-linear system of algebraic equations which deter-
mine the values (A1,U1), (A2,U2) and (A3,U3) at the bifurcation. The inputs to the system are the material
properties of the vessels b or equivalently their distensibilities, D, the vessel equilibrium areas A0 at the bifur-
cation and the values of W 1

1, W 2
2 and W 3

2 which can be evaluated from the initial values of (A1,U1), (A2,U2) and
(A3,U3). The solution to this Riemann problem is used to evaluate an upwind flux at the junction in the dis-
continuous Galerkin numerical discretization.

2.2. Stochastic model for the human arterial network

This section outlines the mathematical framework for general hyperbolic systems with random inputs. In
addition, we present the generalized polynomial chaos (gPC) expansion and the corresponding stochastic dis-
cretization schemes to transform the stochastic governing equations into deterministic equations.

2.2.1. Mathematical formulations for random hyperbolic equations

Let x 2 R and restrict our exposition to one spatial dimension. Let T > 0 be some fixed time, and ðX;F ;PÞ
be a complete probability space, where X is the set of outcomes, F � 2X the r � algebra of events and
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P : F ! ½0; 1� a probability measure. We study the following random differential equation: find a stochastic
vector function, v ¼ ½v1; . . . ; vm�T : R� ½0; 1� � X! Rm, such that for P � almost everywhere x 2 X, the fol-
lowing equation holds:
ov

ot
ðx; t;xÞ þ oFðvÞ

ox
ðx; t;xÞ ¼ sðx; t;xÞ; in R� ð0; T � � X; ð14Þ
subject to the initial condition
v ¼ g on R� ft ¼ 0g � X; ð15Þ

where s;F : R� ½0; T � � X! Rm and gðx;xÞ : R� X! Rm are known stochastic functions with the following
assumptions:

� H � oF=ov : R� ½0; T � � X!Mm�m exists P-a.e. in X;
� H is strictly hyperbolic P-a.e. in X, i.e., for P-a.e. x 2 X, the matrix H(Æ,x) has m real distinct eigenvalues;
� Hð	;xÞ 2 C2ðR� ½0; T �; Mm�mÞ and supR�½0;T �ðjHð	;xÞj; jDx;tHð	;xÞj; jD2

x;tHð	;xÞjÞ <1 for P-a.e. x 2 X;
� g 2 H 1ðR; RmÞ 
 L2ðX; RmÞ and s 2 H 1ðR� ð0; T Þ; RmÞ 
 L2ðX; RmÞ.

Here standard definitions for Ck, Lp and H1 spaces are employed. Under these conditions, Eq. (14) can be
written equivalently in a non-conservative form as, for P-a.e. x 2 X,
ov

ot
þHðvÞ ov

ox
¼ s; in R� ð0; T � � X; ð16Þ
subject to initial condition
v ¼ g on R� ft ¼ 0g � X: ð17Þ

The regularity assumptions are direct extension of those in the deterministic theory.

2.2.2. Modelling of random inputs

The source of uncertainty in this study is the parameters in Eqs. (1)–(3). In particular, we will study the
effects of uncertainty resulted from parameter b (see (3)), which is a function of the material properties and
initial cross-sectional area of the arterial vessel (it is also directly related to wave speed) and possesses
large variability. Here we model the parameters b in each segment as random variables that are indepen-
dent from each other in different segments. We further assume that their values are bounded and can be
expressed as
biðxÞ ¼ hbiið1þ riyiðxÞÞ; i ¼ 1; . . . ;N ; ð18Þ
where N is the total number of network segments. Inside each segment, Æbiæ is the mean value, yi(x) is a ran-
dom variable uniformly distributed in (�1,1), and ri > 0 is a real number controlling the variability of the
parameter. We remark that distributions other than uniform can be readily handled and do not change the
following formulation. In the current work we employ uniform distribution due to the lack of evidence sug-
gesting otherwise.

In practice, the distributions of parameters should be estimated from experimental observations. When
observations are scarce to render such estimations, care needs to be taken to make proper assumptions on
the distributions. This is particularly true when distributions with unbounded support (e.g., Gaussian) are
to be employed, as such distributions may change the properties of the underlying hyperbolic system. For
example, consider a simple one-dimensional hyperbolic system
ou

ot
þ oFðuÞ

ox
¼ 0; ð19Þ
where
u ¼ u1; u2½ �T; FðuÞ ¼ u2; a
2u1

� �
; a 6¼ 0: ð20Þ
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The corresponding Jacobian is
AðuÞ � oFðuÞ
ou
¼

0 1

a2 0

� �
: ð21Þ
This is a strongly hyperbolic system with eigenvalues k1,2 = ± a. Now assume that the system is subject to
random input and the flux takes the form F(u) = [u2(1 + �(x)),a2u1], where �(x) is a random variable. The sto-
chastic Jacobian becomes
AðuÞ ¼
0 1þ �
a2 0

� �
: ð22Þ
The eigenvalues are k1;2ðxÞ ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �ðxÞ

p
. It is clear that the stochastic problem is weakly (strongly) hyper-

bolic only if � P � 1 (� > � 1). Therefore, while the original deterministic problem is always hyperbolic, the
stochastic problem is not whenever the random variable �(x) is not properly bounded, e.g. a Gaussian
distribution.

2.2.3. Governing equations

Let qi : Ci ! Rþ be the probability density functions (PDF) of the random variable yi(x), x 2 X, and its
image Ci � yiðXÞ � R be intervals in R for i = 1,. . .,N. Then
qðY Þ ¼
YN
i¼1

qiðyiÞ; Y 2 C ð23Þ
is the joint probability density of the random vector Y = (y1, . . . ,yN) with the support
C �
YN
i¼1

Ci � RN : ð24Þ
This allows us to conduct numerical formulations in the finite dimensional (N-dimensional) random space C,
in replacement of the infinite dimensional space X. The stochastic governing equations are: find
v ¼ ½A;U �T : R� ½0; T � � C! R2, such that for all Y 2 C, the following equation holds:
ov

ot
ðx; t; Y Þ þ oFðvÞ

ox
ðx; t; Y Þ ¼ sðx; t; Y Þ; in R� ð0; T � � C; ð25Þ
subject to initial condition
v ¼ g on R� ft ¼ 0g � C; ð26Þ

where F = (AU,U2/2 + p/q)T, s = (0,f/(qA))T. In practice, the computational domain is always bounded. It is
necessary to replace the unbounded spatial domain R with a bounded domain D 2 R in the above formulation
and supplement with the following boundary condition:
BðvÞ ¼ 0; on oD� ½0; T � � C; ð27Þ

where B is an appropriate boundary condition operator.

In this paper, under the assumption that yi(x) are uniformly distributed in (�1,1) for all i = 1,. . .,N, we have
qi = 1/2 and C = (�1,1)N.

2.3. Generalized polynomial chaos

To solve system (25)–(27), we employ the generalized polynomial chaos (gPC) expansion.
In gPC expansion, solutions of the system are expanded as finite-term orthogonal polynomials series in

terms of the input random variables, i.e.,
vMðt; x; Y ðxÞÞ ¼
XM

j¼1

bvjðt; xÞUjðY ðxÞÞ; ð28Þ
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where fUjðY ÞgM
j¼1 are N-variate orthogonal polynomials of degree up to P. Subsequently, the total number

of polynomial basis functions is M = (N + P)!/(N!P!). Corresponding to the uniform distribution of Y, the
orthogonal polynomials U are chosen as Legendre polynomials. For other types of distributions of Y, dif-
ferent types of orthogonal polynomials can be chosen to achieve better convergence, e.g., Hermite poly-
nomials for Gaussian distribution. For further details, see [39]. The expansion coefficients can be obtained
by
bvjðt; xÞ ¼
Z

C
vðt; x; Y ÞUjðY ÞqðY ÞdY ; j ¼ 1; . . . ;M ; ð29Þ
where the orthogonal polynomial basis functions have been properly normalized.

2.3.1. Stochastic collocation method

The objective is to evaluate the expansion coefficients fv̂jg using the stochastic collocation method based on
sparse grid [37,36]. The procedure consists of the following steps:

1. Choose a collocation nodal set (sparse grid) fY ðmÞ; aðmÞgQ
m¼1 in space (�1,1)N, where Y ðmÞ ¼ ðyðmÞ1 ; . . . ; yðmÞN Þ is

the mth-node and a(m) is its corresponding weight;
2. for each m = 1,. . .,Q, solve problem (25)–(27) with a fixed parameter set bðmÞi ¼ hbiið1þ ryðmÞi Þ; i ¼ 1; . . . ;N ,

via an accurate numerical scheme, to obtain its solution evðmÞ ¼ eAðt; x; Y ðmÞÞ; eU ðt; x; Y ðmÞÞ; (Note this is a
deterministic problem.)

3. evaluate the approximate gPC expansion coefficients
ebv jðt; xÞ ¼ UQ½evðY ÞUjðY Þ� ¼
XQ

m¼1

evðmÞ/jðY ðmÞÞaðmÞ; j ¼ 1; . . . ;M ; ð30Þ
4. and finally, construct the N-variate, Pth-order gPC approximation
evMðt; x; Y Þ ¼
XM

j¼1

ebv jðt; xÞUjðY Þ; M ¼ N þ P
N

� �
: ð31Þ
The choice of the nodal set fY ðmÞ; aðmÞgQ
m¼1 should be made such that an accurate integration rule can be

constructed, i.e., UQ½f � ¼
PQ

m¼1f ðY ðmÞÞaðmÞ �
R

C f ðY ÞqðY ÞdY with sufficient accuracy. By doing so, Eq.
(30) is an approximation to the exact coefficients defined by Eq. (29). Subsequently, Eq. (31) is an approx-
imation of the exact gPC expansion (28). It is shown in [36] that the errors of the approximate gPC solu-
tion (31) via this stochastic collocation algorithm stem from three sources: �G, finite-term truncation error
of gPC expansion (28); �D, deterministic numerical error in solving system (25)–(27); and �Q, error in
approximating the integrals in (29) by a discrete integration rule (30). The overall mean-square error
can be bounded by
� �
Z

C
½vðx; t; Y Þ � evMðt; x; Y Þ�2qðY ÞdY

� �1=2

6 ½�2
G þ �2

Q þM�2
DC2

Q�
1=2
; ð32Þ
where CQ is a constant associated with the integration rule and independent of all other factors. For details,
see [36]. We remark that the major computational efforts will be on the repetitive and deterministic solutions of
(25)–(27) for each fixed parameters Y(m), m = 1,. . .,Q. The choice of nodal set is a pre-processing step, and the
evaluation of gPC coefficients (30) and reconstruction of the approximate gPC expression (31) are post-pro-
cessing steps.

Existing studies suggest that for moderately large number of input random variables, the Smolyak sparse
grid is an efficient choice [37,36]. The sparse grid is a subset of the full tensor product grids based on one-
dimensional nodal set, as illustrated in Fig. 2 for a two-dimensional space. It retains the high accuracy resulted
from high-order polynomial approximations but employs much less number of nodes in higher dimensional
spaces.
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2.3.2. Solution statistics and sensitivity analysis

Upon numerical evaluations of all the expansion coefficients via (30), we essentially have an analytical
expression of the stochastic solution in a polynomial form of (31), and various post-processing procedures
can be carried out to obtain solution statistics. For example, the mean value can be evaluated as
hevMðx; tÞi �
Z evMðx; t; Y ÞqðY ÞdY � UQ evMðx; t; Y Þ½ � ¼

XQ

m¼1

evðmÞaðmÞ: ð33Þ
Parametric sensitivity analysis can also be conducted in a straightforward manner. Here we define the scaled
global sensitivity coefficients with respect to the input random parameters as
Sev;j � hbji
oevM

obj

* +
¼ 1

r

Z
oevM

oyj

qðY ÞdY ; j ¼ 1; . . . ;N : ð34Þ
When the numerical gPC approximation (31) is obtained, the above integral can be readily obtained, i.e.,
Sev;j ¼ 1

r

XM

i¼1

ebv i

Z
UiðY Þ
oyj

dY ;
where the integrals of the polynomial derivatives can be evaluated analytically via their definitions.

3. Numerical results

To demonstrate the stochastic modelling techniques we consider two examples. In the first test case (Section
3.1) we analyze a small network of three vessels which make a single bifurcation. This example is useful to help
motivate the deterministic dynamics and interpret the results from the uncertainty analysis. Then in Section
3.2 we consider a network of 37 arteries compiled to represent the larger arteries of the human systemic system
and previous studied in a deterministic manner in [22,3].

3.1. Case I: One-bifurcation network

3.1.1. Deterministic solution

We start by considering the solution of the deterministic solutions as schematically illustrated in Fig. 3. In
this problem we consider three segments of vessel connected to make a single bifurcation. Each segment has a
length of 20 cm and circular cross-section. The parent vessel has a diameter of 1 cm whilst both the daughter
branches have diameters of 1=

ffiffiffi
6
p

cm. In the parent vessel the material parameter b is set to b = 32,497 g/
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(s2 cm2), whilst in the daughter vessels we have specified that b = 79,602 g/(s2 cm2). Using Eq. (4) we observe
that the linearized wave speed, when q = 1 g/cm3, in the parent and daughter vessels are all c = 120 cm/s.
These values are physiologically plausible for a large artery although the wave speed is relatively slow.

For the deterministic discontinuous Galerkin solver, 10 uniform elements are used inside each segment and
polynomial order of seven was imposed. A similar discretization was also adopted in all subsequent solution of
this problem. History points were placed at the boundaries and in the middle of each domain, labelled as
points A–G in the Fig. 3a. As highlighted in Fig. 3, in these tests a relatively short pulse period is imposed
at points A through an absorbing velocity condition on the incoming characteristic [26] of the form
Uð0�; tÞ ¼ U peak expð�Cðt � t0Þ2Þ; Að0�; tÞ ¼ p
4
; ð35Þ
where Upeak = 1 cm/s, C = 5000 s�2 and t0 = 0.05 s is introduced at the inlet of the parent domain (labelled
point A in Fig. 3 (a)). From this definition we observe that the time period over which the pulse velocity
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has a magnitude greater than 1e � 2 cm/s is Dt ¼ 2
ffiffi
ð

p
� lnð0:01Þ=� CÞ � 0:06 s which is far shorter than a

normal heart beat. Further, under a linearized assumption the input pulse wave given by Eq. (35) has a spatial
wavelength of approximately k = c · Dt = 7.2 cm. This wavelength is unrealistic since physiological waves typ-
ically have wavelengths of the order of 2 m and longer. However, the use of a short wave allows us to more
easily understand the dynamics of the system. The pulse wave solution can also be interpreted as a type of
transfer function of the system from which we can deduce the role of longer wavelength input under linear
assumptions [33].

The input wave transmits through the parent vessel as shown in Fig. 3a. We observe from the inset plots on
the right hand side, which illustrate the solution in terms of the characteristic values, that at this time there are
only forward, W1(x, t), travelling waves. As the wave arrives at the bifurcation there is a partial reflection of
the pulse back into the parent vessel and an associated transmission of the pulse into the daughter vessels. The
reflection leads to the generation of a backward travelling, W2(x, t), pulse in the parent vessel as shown in
Fig. 3b and c. The size of the reflected pressure perturbation on top of an incoming pressure perturbation
can be determined, to first-order, by the linearized reflection coefficient (using the wave speed evaluated at
the undeformed area [26]) defined as:
Fig. 4.
Left: d
Rf ¼
A1

c1
� A2

c2
� A3

c3

A1

c1
þ A2

c2
þ A3

c3

¼ 1

2
; ð36Þ
where the subscript 1 refers to the parent vessel and subscripts 2 and 3 denote the daughter vessels. The trans-
mitted pressure perturbation to the daughter vessel is equivalently defined as T = 1 + Rf = 3/2. Finally, in
Fig. 3c we observe that the waves propagate along the various vessels and since in this problem we have di-
rectly imposed the boundary conditions on the incoming characteristics there are no reflection and the waves
are entirely absorbed at the boundaries.

In the following analysis we will concentrate on the time history of the pressure waves at the history points
labelled in Fig. 3a. In Fig. 4 we therefore show the time history for points A–E corresponding to the deter-
ministic simulation outlined in Fig. 3. We observe from the left hand plot of Fig. 4 that the incoming pressure
wave generated by Eq. (35) has a peak magnitude of 60 g/(s2 cm) and the pulse occurs over an approximate
time period of 0.063 s. Using a linear analysis, the pulse propagates at c = 120 cm/s and hence passes point B,
which is located at x = 10 cm after a time delay of Dt = 10/120 = 0.08 s. When the pulse reaches the bifurca-
tion at point C the linear reflection predicted by Eq. (36) dictates that half of this wave is reflected back into
the parent vessel. At point C we observe the addition of the forward travelling pressure pulse with the reflected
wave leading to a pulse of magnitude 3/2 · 60 = 90 g/(s2 cm). However, as the reflected wave propagates back,
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it again passes past points B and then A and has a pulse of magnitude 1/2 · 60 = 30 g/(s2 cm). Analogously
the transmitted pulse into the daughter vessels has a transmission coefficient of T = 3/2 and so on the right
hand plot of Fig. 4 we observe a pulse of magnitude 3/2 · 60 = 90 g/(s2 cm) propagating past points D and
E also at a speed of 120 cm/s.

3.1.2. Stochastic solution: absorbing terminals

We now consider a 10% variation in the b parameter that depends on the material properties and geometry
of each vessel using the uncertainty analysis outlined in Section 2.2. From Eq. (4) we note that there is a square
root relationship between b and wave speed c and so varying b from 0.9 6 b/Æbæ < 1.1 corresponds to a var-
iation in wave speed of 0.95 6 c/Æcæ 6 1.05, i.e. a 5% variation in wave speed. Typically the wave speed (or
equivalently the vessel wall characteristics) are difficult to determine either in vivo or in vitro and so this quan-
tity is likely to be a significant source of uncertainty when obtaining data. Once again we prescribe the deter-
ministic inflow conditions given by Eq. (35) in an absorbing characteristic manner and similar to the previous
deterministic solutions we use 10 equispaced elements within each vessel with a polynomial expansion of order
seven.

Before considering the Stochastic solution we first illustrate the convergence of the solution with respect to
the sparse grid of order k in the stochastic collocation method (see [37,36] for more details). With three uncer-
tainty parameters b (one for each segment), we have a three-dimensional random space (N = 3). For sparse
grid collocation method with order k, the number of nodes (Q) are Q = 6 for k = 1; Q = 25, for k = 2;
Q = 69 for k = 3; and Q = 177 for k = 4. In Fig. 5 we therefore plot the time mean and standard deviation
at history point A over the time period 0.34 s < t < 0.42 s after the incoming pulse wave has reflected at the
bifurcation (see also Fig. 4). The convergence with respect to sparse grid order k is also shown in Table 1
where we tabulate the mean and STD root mean square error for each sparse grid order expressed as a per-
centage of the k = 4 result.

In Fig. 6 we plot the mean value and standard deviation (STD) of the pressure signal for the history points
in the parent vessel and one daughter vessel (i.e. A–E) at k = 4, similar to the deterministic problem shown in
Fig. 4. We have also superimposed the deterministic solution, with a dotted line on top of the mean values.
Since the mean represents the ensemble average (with a uniform probability density function) of the pulse
wave initially propagating forwards and then reflecting back it is not surprising that the pulse broadens
and has a slight decrease in the peak. The broadening physically corresponds to the fact that at points further
downstream pulses of faster (or slower) wave-speeds will propagate further (or less) than the deterministic
solution. A natural consequence of this observation is also that there is a slight reduction of the peak.

As the pulse wave propagates along each element, the standard deviation increases and exhibits a double
peak shape. This form is consistent with an analytical investigation (not shown) involving the linear propaga-
tion of a single pulse at varying wave-speeds and then ensemble averaging the solutions (i.e. a Monte Carlo
t
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Table 1
Relative error as we increase the sparse grid order k with respect to the k = 4 results

Stochastic order Relative error

k (Q) Mean (%) STD (%)

1 (6) 21 35
2 (25) 3.6 7.3
3 (69) 0.3 0.7

Also shown in brackets are the number of nodes Q corresponding to each value of K.
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Fig. 6. Time history of the mean (left) and standard deviation (right) of pressure (g/(s2 cm)) at the fixed points A–E in domain 1 (Parent)
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evaluation). However, when we analytically consider the solution of linear pulse wave propagation, the two
peaks of the STD distribution are observed to have the same magnitude. We therefore attribute the asymmetry
between the two peaks to the non-linearity included in the numerical simulation which leads to a steepening of
the compression side of the pulse as it propagates.

We note that a steepening at the front of a pulse wave in space corresponds to a steepening at the back of
the pulse wave signal in time. Therefore the higher STD peak in the double peak distribution correlates to the
part of the pulse which is spatial steepening. It is also interesting that in Fig. 6 (right) the differential between
the STD double peaks is more notable at points B and C when t < 0.25 s. However when the wave reflects (and
the steepening of the wave is now on the other side of the pulse) the STD distribution starts to even out.
Finally, we notice that at the bifurcation, point C, the standard deviation is significantly higher, which is con-
sistent with the incoming pulse and reflecting wave overlapping at this point. Ignoring the bifurcation point in
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Fig. 6 (right) the increase in the STD occurs at an approximately linear rate of growth in time. The exception
being the STD form initial history signal at point A where there is no variation in the wave speed as this inflow
condition is directly imposed at this point.

The sensitivity coefficients SP,j, defined in Eq. (34), for pressure with respect to the three random input
parameters bj, (j = 1,2,3) are evaluated at the history points and shown in Figs. 7 and 8. We note that
j = 1 is the parent domain and domains 2 and 3 are the daughter vessels. Fig. 7 only shows SP,2 since it is
identical to SP,3 due to the symmetry of the problem. The SP,2 signal is roughly two orders of magnitude smal-
ler than SP,1 (note the scales) highlighting that the pressure, in this problem, is only weakly affected by the
material properties of the daughter vessels. This low sensitivity is due to the fact there are no reflections from
the ends of the daughter vessels. Therefore the only influence on the pressure due to a change in the material
properties b2,3, can be interpreted through the linearized reflection coefficient (Eq. (36)) which will be altered
since it is dependent upon the wave speed cj and so is implicitly a function of bj. We also note that
SP,2 = SP,3 = 0 when the wave is propagating forward along the parent vessel and so the reflection at the bifur-
cation has not yet entered into the solution. However, once the wave has reflected we observe a small,
SP,2 = SP,3 � 1, contribution to the sensitivity. In addition to the larger magnitude of SP,1 as compared to
SP,2 there is also difference in shape of the different sensitivities, since the SP,2 distribution is purely positive
in Fig. 7.
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Fig. 7. Sensitivity coefficients of pressure with respect to the random input vessel bj in the parent vessel. Left: SP,j at point B; right: SP,j at
point C, j = 1,2,3.
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From Eq. (34) we recall that our measure of sensitivity is an ensemble average of op/obj. Consideration of
Eq. (36) leads us to deduce that an increase in b2 (or b3) will lead to an increased in c2 (or c3) which results in a
larger reflection coefficient. Therefore any increase in b2 or b3 causes a larger reflected pressure wave and so an
increase in p and so results in a positive sensitivity. The shape of SP,1, however, changes sign as the pulse prop-
agates over the history point and this can be attributed to the fact that if we consider a time interval when the
pulse is increasing over a history point then an increase in b1 would lead to an increase in c1. The increase in c1

results in the pulse being further advanced in time and so has an increased value of pressure (i.e. oP/obj > 0).
Conversely during a time interval where the pulse peak has passed the history point an increase in b1 (and
therefore c1) would imply a decrease in the pressure value (i.e. oP/obj), and hence, cause the sensitivity measure
to be negative.

Finally we note that there is a significant increase in the sensitivity at point C in the parent vessel (note the
scale in Fig. 7 (right)). This is consistent with the increase in the mean and standard deviation of the pulse
information shown in Fig. 6 and is also consistent with observations of patient monitoring of flow rate signals
using ultrasound in coronary arteries [2].

In the daughter vessels, as shown in Fig. 8, the stochastic solutions are directly affected by the upstream
incoming wave from the parent vessel (i.e. vary with SP,1), as well as the material properties of the local daugh-
ter vessel containing the history points (i.e. domain 2 or 3). Subsequently the output uncertainty strongly
depends on parameters b1 and b2 (or b3), and we observe significant sensitivity coefficients of SP,1 and SP,2

with a similar form as SP,1 in the parent vessel. Dependence upon the other daughter vessel (domain 3) is again
weak and has a similar positive shape for the same reasons as the sensitivity in domain 1 with respect to
domains 2 and 3.

3.1.3. Stochastic solution: terminal reflections

In more complicated arterial networks we typically expect wave reflections to arise at the end of the termi-
nal vessels. We increase the complexity of the previous example by imposing terminal reflections. In the fol-
lowing example we therefore consider the same one-bifurcation network illustrated in Fig. 3 but now impose a
50% reflection at the end of the two daughter vessels, i.e. domains 2 and 3. In addition, we strictly impose a
reflective pulse velocity at the inflow, rather than on the incoming characteristic, as defined by Eq. (35). Fig. 9
show the mean pressure signal and their standard deviations in the parent and one of the daughter vessels at
k = 5. The explicit enforcement of the velocity condition doubles the peak of the pressure in the previous case
shown in Fig. 6. Further, after the initial peak has entered the domain a zero velocity condition is enforced at
the inflow which is equal to a 100% reflection of any backward travelling wave arriving at the inflow at later
times.

Fig. 9 shows that up to t = 0.4 s the history points are analogous to the previous case shown in Fig. 4. We
recall these initial signals correspond to the pulse propagating down the parent vessel and then a 50% reflec-
tion occurs at the bifurcation. At history point A when t � 0.4 s we observe that the reflected pulse has a
higher peak than when it passed point B at t � 0.3 s because at this later time it is now reflected at the inflow.
The increase in the peak is therefore analogous to the increase in pulse peak at the pulse hits the bifurcation
(i.e. point C at t � 0.2 s). In this reflecting case we now observe at history point B at t � 0.47 s that the
reflected wave from the inflow is again propagating down the parent vessel. At the same time t � 0.47 s at his-
tory point D we observe that the initial pulse wave has transmitted to the daughter vessels and 50% of this
pulse has been reflected back towards the bifurcation. When the backwards travelling pulses in the daughter
vessels reach the bifurcation, application of the equivalent to Eq. (36) for a wave entering from the daughter
vessel tells us that the pressure wave will reflect with a coefficient Rf = � 3/4 and will transmit a wave of 1/4
magnitude back into the parent vessel. Due to the symmetry of this model, there is also a pulse arriving at the
bifurcation from the parent vessel (of similar magnitude) which is transmitted to the daughter vessels with a
multiplying factor of 3/2. The reflected pulse in the daughter vessel therefore has a magnitude of (3/2 � 3/
4) · 1/2 = 3/8 and this pulse of reduced magnitude is evident at time t � 0.65 s, in point D (Fig. 9).

Figs. 10 and 11 shows the sensitivity coefficient of pressure (see Eq. (34)) in the parent (domain 1) and
daughter (domains 2 and 3) vessels with respect to the three input random variables bj, j = 1, 2, 3. In
Fig. 10 we see the time history at points A and B. We have only plotted the sensitivity with respect to one
daughter vessel since the symmetry of the problem means that SP,2 = SP,3. In contrast to Fig. 7 we observe
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that the history points in the parent vessel now have a notable sensitivity to the b parameter in the daughter
vessels. Up to time t � 0.4 the system is analogous to the previous example and the sensitivity SP,2 = SP,3 is
still small compared to SP,1. However, by t � 0.7 s we observe a sensitivity in SP,2 and SP,3 which is approx-
imately 25% the magnitude of SP,1. At this time a wave has propagated through the daughter vessel, reflected
at the domain termination and travelled back to the inflow.

Fig. 11 shows the time history sensitivity at points D and E. Overall we observe similar dynamics to the
points in the parent vessel (Fig. 10) and the sensitivities are of equivalent magnitude to Fig. 8. However
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one new pattern which can be identified is in the SP,2 history at t � 0.65 s where the shape of the sensitivity
distribution is reversed when compared to other pulse wave passing history points. We recall that at this point
a pulse has propagated down the daughter vessel, reflected at the termination of the system and then finally
reflected at the bifurcation. This last reflection has a negative coefficient, Rf = � 3/4 and therefore the sensi-
tivity, SP,2 with respect to the daughter vessel is reversed.

3.2. Case II: Realistic network of 37 vessels

To present a more applied application we consider the case of a network of 37 vessels connected via 16
bifurcations as shown in Fig. 12a and for which geometric information is provided in Table 2. This network
is taken from a in vitro model of the larger arteries in the human. A comparison of the deterministic non-lin-
ear, one-dimensional model with in vitro data has been previously undertaken and reported in [22]. In this
Fig. 12. (a) Thirty-seven vessel in vitro network. (b) The experimental flow rate measured at the ascending aorta enforced as the inflow
boundary condition.



Table 2
Data of the 37 silicon tubes shown in Fig. 12

Arterial segment l (mm) ±2.0% rin! rout (mm) ±3.5% h (mm) ±2.5% cin! cout (m/s) Rp (109 Pa s m�3)

1. Ascending aorta 36 14.40! 13.00 0.51 5.21! 5.49 –
2. Innominate 28 11.00! 7.29 0.35 4.89! 6.01 –
3. R. carotid 145 5.37! 3.86 0.28 6.35! 7.49 2.67
4. R. subclavian I 218 4.36! 3.34 0.27 6.87! 7.84 –
5. R. subclavian II 165 3.34! 2.78 0.16 6.00! 6.58 –
6. R. radial 235 2.07 0.15 7.43 3.92
7. R. ulnar 177 2.10 0.21 8.81 3.24
8. Aortic arch I 21 13.00! 12.50 0.50 5.41! 5.52 –
9. L. carotid 178 5.58! 3.73 0.31 6.55! 8.00 3.11
10. Aortic arch II 29 12.50! 11.80 0.41 4.98! 5.12 –
11. L. subclavian I 227 4.42! 3.39 0.22 6.21! 7.10 –
12. L. subclavian II 175 3.39! 2.84 0.17 6.26! 6.84 –
13. L. radial 245 2.07 0.21 8.84 3.74
14. L. ulnar 191 2.07 0.16 7.77 3.77
15. Thoracic aorta I 56 11.80! 11.00 0.43 5.29! 5.48 –
16. Intercostals 195 4.12! 3.22 0.27 7.07! 7.99 2.59
17. Thoracic aorta II 72 11.00! 9.26 0.34 4.84! 5.26 –
18. Celiac I 38 3.97 0.20 6.20 –
19. Celiac II 13 4.31 1.25 14.90 –
20. Splenic 191 1.83 0.13 7.24 3.54
21. Gastric 198 1.92 0.11 6.73 4.24
22. Hepatic 186 3.31! 2.89 0.21 6.95! 7.44 3.75
23. Abdominal aorta I 62 9.26! 8.01 0.33 5.19! 5.59 –
24. L. renal 120 2.59 0.19 7.39 3.46
25. Abdominal aorta II 7 7.90 0.35 5.83 –
26. R. renal 118 2.55 0.16 6.95 3.45
27. Abdominal aorta III 104 7.80! 5.88 0.30 5.41! 6.24 –
28. R. iliac-femoral I 205 3.9! 3.38 0.21 6.47! 6.94 –
29. R. iliac-femoral II 216 3.38! 2.31 0.15 5.89! 7.13 –
30. R. iliac-femoral III 206 2.31! 2.10 0.20 8.04! 8.44 -
31. L. iliac-femoral I 201 4.02! 3.34 0.20 6.19! 6.79 –
32. L. iliac-femoral II 195 3.34! 2.26 0.16 6.11! 7.44 –
33. L. iliac-femoral III 207 2.26! 2.12 0.13 6.67! 6.89 –
34. R. anterior tibial 163 1.55 0.15 8.47 5.16
35. R. posterior tibial 151 1.53 0.12 7.73 5.65
36. L. posterior tibial 149 1.58 0.11 7.23 4.59
37. L. anterior tibial 126 1.55 0.10 7.01 3.16

l, length; rin! rout, diastolic cross-sectional radii at the inlet and the outlet, linearly tapered in between; h, average wall thickness;
cin! cout, wave speed at the inlet and the outlet; Rp, peripheral resistance. Single numbers indicate vessels with a constant cross-section.
The interval of confidence of the geometrical measurements is indicated in the heading. Data taken from [22].
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study the outflow boundary conditions were treated in the most straightforward, reproducable experimental
manner by attaching a rigid tube to the outflow segment which were then attached to overflow reservoirs of
fixed height. This type of terminal boundary condition does not give physiological reflections because periph-
eral compliance is not simulated. However, the experimental uncertainty is minimized by such an approach
which was the objective of the study in [22].

The rigid tube attached to the outlet of each terminal branch, together with the overflow reservoir at con-
stant height, were simulated as outflow boundary conditions by enforcing the relation
Q1D ¼
p1D � pout

Rp

; ð37Þ
where Q1D and p1D are the flow rate and pressure at the outlet of the one-dimensional terminal branch,
pout = 3.2 mmHg is the constant hydrostatic pressure measured at the overflow reservoir, and Rp is the periph-
eral resistance to flow, determined from mean pressure and flow measurements close to the outlet of each ter-
minal branch and listed in Table 2.
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As in our previous examples, we study the effect of introducing a 10% uncertainty into the elastic parameter
b(x). The size of the network requires a larger stochastic space–the introduction of 37 independent random
variables in each vessel results in a 37-dimensional (N = 37) random space. The simulations were performed
with a stochastic order of k = 2 and even at this relatively lower resolution, Q = 2813 independent ‘‘sampling’’
simulations are required. Although this is a lower stochastic order than those used in our previous problems,
the temporal wavelength of this more physiological problem is much larger which reduces the complexity of
the solution in the stochastic space. Thus, similar to the non-reflective model considered in Section 3.1.2, k = 2
should produce reasonably accurate statistics for at least the first two moments (mean and variance). More-
over, existing numerical evidence indicates that for many problems, both time independent and time depen-
dent, the sparse grid stochastic collocation method with k = 2 delivers comparable, if not more, accurate
results than Monte Carlo simulations with at least 10,000 realizations (see [37] for comparisons in random
dimensions as high as 50). Following the approach in [22] we consider a series of nine representative vessels
taken from the main aorta and within the first, second and third generations of the bifurcating network. These
vessels are highlighted with a square in Fig. 12(left). Within the top level vessels we consider the aortic arch II
(vessel 10), thoracic aorta II (vessel 17) and abdominal aorta III (vessel 27). Within the first generation we
consider the left subclavian I (vessel 11) and right iliac-femoral II (vessel 29), within the second generation
of vessels we consider the left ulnar (vessel 14) and right anterior tibial (vessel 34), and within the third gen-
eration the right ulnar (vessel 7) and splenic (vessel 20).

The simulations were run over a time interval of 10 s which allowed the network to reach a time periodic
state. Table 3 shows the maximum and minimum value of the pressure sensitivity SP,j with respect to the sub-
set of vessels considered. The sensitivity was evaluated at the centre of each vessel and the maximum and min-
imum were taken over the last six cycles of this simulation. Each row of the table corresponds to a single vessel
and therefore each entry in a row denotes the maximum and minimum sensitivity of this vessel with respect to
changes in the elastic properties of the other vessels.

To help interpret the data in Table 3 we can consider some physical properties of the arterial network.
Under normal physiological conditions, we expect that forward travelling waves from the aorta are well-
matched at each bifurcation. This necessarily implies that reflected waves are not well-matched when propa-
gating toward the root of the arterial tree and this leads to a wave trapping phenomena, in which backward
travelling waves are trapped in the lower generations of the tree. This is consistent with the observation in [22]
that pulse waveforms in the aorta have a physiological shape, which means that they are not significantly influ-
enced by the reflective terminal boundaries due to wave trapping phenomena.
Table 3
Minimum and maximum values of the pressure sensitivity SP,j evaluated over the last six cycles with respect to a selection of representative
vessels in the 37 network

Vessel no. Min. and max. pressure sensitivity SP,j with respect to vessel

Aorta First generations Second generations Third generations

10 17 27 11 29 14 34 7 20

10 �75 84 �176 176 �110 167 �48 52 �90 137 �20 21 �53 80 �15 14 �36 30
17 �75 97 �148 193 �117 218 �54 58 �69 152 �22 20 �29 70 �16 17 �31 27
27 �104 114 �198 254 �294 367 �59 61 �266 385 �26 22 �104 184 �17 21 �81 72

11 �96 96 �234 238 �179 156 �589 550 �117 108 �210 196 �44 87 �29 36 �50 44
29 �135 162 �372 496 �485 654 �117 130 �871 928 �52 53 �425 483 �39 35 �106 92

14 �108 120 �281 274 �230 254 �530 538 �183 227 �674 581 �113 138 �44 49 �53 46
34 �235 288 �469 527 �605 722 �105 143 �967 1315 �93 84 �698 1192 �61 62 �142 129

7 �142 122 �244 278 �201 227 �119 119 �188 202 �79 81 �86 124 �351 371 �49 40
20 �118 147 �246 232 �376 394 �68 90 �286 287 �29 43 �119 100 �15 19 �534 618

Each row of the table represents a single vessel and the entries within that row represent the sensitivity with respect to the variation of the
elastic parameter b in another vessel.
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Taking the wave trapping characteristic of the network into consideration we would expect that rows of the
table corresponding to the uppermost vessels are relatively insensitive to changes in lower generations. Con-
sidering the first three rows of Table 3 we observe that the sensitivity on average decreases with each gener-
ation. Analogously, the rows corresponding to lower generations are significantly affected by the generations
higher up the tree but are relatively insensitive to lower generations. This means that the entries beneath the
diagonal of the table has a higher sensitivity than those above the diagonal.

The diagonal block components of the table demonstrate a reasonably high sensitivity due to their local
influence. However, we observe that the diagonal block are not necessarily symmetric. This reflects the fact
that the transmission of waves, for example, from vessel 14 to 34, is not identical to the transmission of waves
from 34 to 14. Within each diagonal block we note that the smaller vessels tend to have a higher sensitivity
than the larger vessels. This is due to the fact that the smaller vessels have a higher wave speed due to smaller
diameters and stiffer material properties.

The largest variation in the data is between vessel 34 due to variations in vessel 29. We see from Fig. 12 that
vessel 29 is part of the long femoral vessel feeding into the terminal vessel 34. Therefore, variation in the mate-
rial properties and wave speed allows the potential for a large phase difference, and therefore large sensitivities,
in the signals within vessel 34.

4. Conclusions

We present a technique to carry out a systematical study of the effects of parametric uncertainty in pulse
wave propagation in reduced models of human arterial networks. This technique can be applied to any hyper-
bolic system of equations with random parameters bounded to maintain the hyperbolic nature of the problem.
High-order numerical schemes were used in both random space and physical space—a sparse grid stochastic
collocation method based on generalized polynomial chaos and a discontinuous Galerkin method with a spec-
tral/hp discretization, respectively. Detailed numerical simulations were first conducted in an arterial network
with one-bifurcation and reflective and absorbing boundary conditions, where we show and study the effects
of uncertainty in wave patterns and sensitivity. We then apply the numerical technique to a network of the
largest arteries in the human. We have shown that the sparse grid stochastic collocation method [36,37] pro-
vides a feasible method for accurate uncertainty analysis of such a random hyperbolic system with large
dimensions of random inputs (37-dimensional random space). The sensitivity of pressure in each tree segment
with respect to the material and geometrical uncertainty in the b(x) parameter was analyzed in each example
and we are able to quantify the degree of sensitiveness of pressure distribution induced by each uncertain
inputs. Such results present a first systematical attempt in analyzing uncertainty in a human artery tree.
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